nlf calls an optimizer to maximize the nonlinear forecasting (NLF) goodness of fit.
  The latter is computed by simulating data from a model, fitting a nonlinear autoregressive model to the simulated time series, and quantifying the ability of the resulting fitted model to predict the data time series.
  NLF is an indirect inference method using a quasi-likelihood as the objective function.
"nlf"(object, start, est, lags, period = NA, tensor = FALSE, nconverge=1000, nasymp=1000, seed = 1066, transform.data, nrbf = 4, method = c("subplex", "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"), skip.se = FALSE, verbose = getOption("verbose"), bootsamp = NULL, lql.frac = 0.1, se.par.frac = 0.1, eval.only = FALSE, transform = FALSE, ...)
"nlf"(object, start, est, lags, period, tensor, nconverge, nasymp, seed, transform.data, nrbf, method, lql.frac, se.par.frac, transform, ...)pomp object, with the data and model to fit to it.
  period=NA means the model is nonseasonal.
    period>0 is the period of seasonal forcing in 'real time'.
  seed to an integer.
    If you want a truly random simulation, set seed=NULL.
  TRUE, parameters are optimized on the transformed scale.
  transform.data is the identity function, i.e., no transformation is performed.
    The main purpose of transform.data is to achieve approximately multivariate normal forecasting errors.
    If data are univariate, transform.data should take a scalar and return a scalar.
    If data are multivariate, transform.data should assume a vector input and return a vector of the same length.
  TRUE, skip the computation of standard errors.
  TRUE, the negative log quasilikelihood and parameter values are printed at each iteration of the optimizer.
  TRUE, no optimization is attempted and the quasi-loglikelihood value is evaluated at the start parameters.
  optim or subplex in the control list.
  nlfd.pomp.
  logLik applied to such an object returns the log quasi likelihood.
  The $ method allows extraction of arbitrary slots from the nlfd.pomp object.
nlf.objfun.
Ellner, S. P., Bailey, B. A., Bobashev, G. V., Gallant, A. R., Grenfell, B. T. and Nychka D. W. (1998) Noise and nonlinearity in measles epidemics: combining mechanistic and statistical approaches to population modeling. American Naturalist 151, 425--440.
Kendall, B. E., Briggs, C. J., Murdoch, W. W., Turchin, P., Ellner, S. P., McCauley, E., Nisbet, R. M. and Wood S. N. (1999) Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80, 1789--1805.
Kendall, B. E., Ellner, S. P., McCauley, E., Wood, S. N., Briggs, C. J., Murdoch, W. W. and Turchin, P. (2005) Population cycles in the pine looper moth (Bupalus piniarius): dynamical tests of mechanistic hypotheses. Ecological Monographs 75, 259--276.